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An adaptive learning rate backpropagation-
type neural network for solving n � n systems
on nonlinear algebraic equations

K. Goulianasa, A. Margarisb*†, I. Refanidisb and K. Diamantarasa

Communicated by T. Monovasilis

This paper presents an MLP-type neural network with some fixed connections and a backpropagation-type training algo-
rithm that identifies the full set of solutions of a complete system of nonlinear algebraic equations with n equations and n
unknowns. The proposed structure is based on a backpropagation-type algorithm with bias units in output neurons layer.
Its novelty and innovation with respect to similar structures is the use of the hyperbolic tangent output function associ-
ated with an interesting feature, the use of adaptive learning rate for the neurons of the second hidden layer, a feature
that adds a high degree of flexibility and parameter tuning during the network training stage. The paper presents the the-
oretical aspects for this approach as well as a set of experimental results that justify the necessity of such an architecture
and evaluate its performance. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

The identification of the full set of roots of systems of nonlinear algebraic equations has been paid with serious attention in the last
years in many disciplines and fields of human knowledge such as physics and chemistry, mechanics and engineering, and generally,
applied mathematics. The method described and applied in this paper is another attempt towards this goal, based on the use of neural
networks. The following sections describe the problem formulation, namely, the structure of the neural network and its mapping to the
corresponding structure of the n � n system of nonlinear algebraic equation, a short review of previous related work that is based on
the neural approach as well as other approaches (e.g., simulated annealing and genetic algorithms), the experimental results emerged
for solving example systems found in the literature, and most importantly, the comparison of the proposed method against other
methods in terms of the number of the identified roots and the simulation accuracy.

2. Problem formulation

The system of nonlinear algebraic equations to be solved is composed of n equations, each one with n unknowns, namely,

f1.x1, x2, x3, : : : , xn/ D 0

f2.x1, x2, x3, : : : , xn/ D 0

f3.x1, x2, x3, : : : , xn/ D 0

: : : : : : : : : : : : : : : : : : : : : : : :

fn.x1, x2, x3, : : : , xn/ D 0

(1)

or in vector form F .x/ D 0. In this notation, F D .f1, f2, f3, : : : , fn/
T is a vector of the nonlinear functions fi.x/ D fi.x1, x2, x3, : : : , xn/,

each one of them being defined in the vector space of all real valued continuous functions, and x D .x1, x2, x3, : : : , xn/
T is the vector of
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unknowns. A special case of the aforementioned general system is associated with the use of constant coefficients with each function
fi.x/ D fi.x1, x2, x3, : : : , xn/ being expressed as [1]

fi.x/ D

nX
j1,j2,:::,jsi

A
j1 j2:::jsi
i xj1 xj2 : : : xjsi

D 0 (2)

where j1, j2, : : : , jsi (i D 1, 2, : : : , n) are the indices of the x variables. In complete accordance with the well-known linear algebraic
systems, this system has one non-vanishing solution (that is, at least one xj ¤ 0) if and only if the resultant< of the system is equal to
zero, or in mathematical form

<s1,s2,:::sn

n
A

j1 j2:::jsi
i

o
D 0 (3)

where .s1, s2, : : : , sn/ are the degrees of equations.
The classical and most known method for solving the aforementioned system of nonlinear algebraic equations is the Newton’s

method [2] that approximates the function F .x/ by its first-order Taylor expansion in the neighborhood of a specific point x D
.x1, x2, x3, : : : , xn/

T 2 Rn. This iterative method starts from an initial guess x0 and generates a sequence of consecutive points towards
to the solution as xk D xk�1 � J .xk�1/

�1F .xk�1/. Even though this method is characterized by fast convergence (provided that
the initial guess is a good one), it requires in each step the evaluation of a Jacobian matrix (namely, the estimation of n2 partial
derivatives) as well as the solution of an n � n linear system and, for this reason, is impractical for large-scale problems. An improve-
ment to this approach can be found in the Broyden’s method [3] that also suffers from the good initial guess, the secant method
[4], as well as the steepest descent method, where this guess is not an issue but a rapidly convergence sequence of vectors can not
be achieved.

3. Review of previous work

The approaches that have been developed so far in an attempt to overcome the limitations of the classical algorithms and the related
methods described earlier can be grouped into two classes: the interval methods that are robust but suffer from large execution time
and the continuation methods that are well suited for problems where the total degree is not too high [5]. An interesting family of
such methods includes the ABS methods [6] that use a generalization of the projection matrix concept known as Abaffian [7, 8] and
their variants (for example, [9], where these methods are used in conjunction with the quasi-Newton method). A completely different
approach is the solution of systems of nonlinear algebraic equations via genetic algorithms (for example [10, 11], and [12]), where a
population of candidate solutions to an optimization problem is evolved towards better solutions until a maximum number of genera-
tions has been produced or a satisfactory fitness level has been reached. Another class of solution methods is based on invasive weed
optimization [13], allowing the identification of all real and complex roots as well as the detection of multiplicity. There are four stages
in these methods, namely, an initialization stage, where a finite number of seeds are dispread randomly over the n-dimensional search
area, a reproduction stage, where each plant is allowed to reproduce seeds based on their fitness, a spatial dispersal stage, where the
produced seeds are randomly distributed in the search space, and a competitive exclusion stage, where undesirable plants with poor
fitness are eliminated, whereas fitter plants are allowed to reproduce more seeds. In these methods, the root-finding process is com-
posed of two phases, namely, a global search where plants abandon non-minimum points vacant and settle down around minima, and
an exact search where the exact locations of roots are determined via a clustering procedure that clusters plants around each roots.

On the other hand, Oliveira and Petraglia [14] solve systems of nonlinear algebraic equations using stochastic global opti-
mization, while Effati and Nazemi [15] apply to this problem the so-called measure theory, a tool capable of dealing with
optimal control problems. The first approach includes the reformulation of the original problem as a global optimization one
and the application of a fuzzy adaptive simulated annealing stochastic process, while in the second approach, the problem is
transformed to an optimal control problem associated with the minimization of a linear functional over a set of Radon mea-
sures, and the system is solved using finite dimensional nonlinear programming techniques. Grosan and Abraham [16] deal
the system of nonlinear equations as a multi-objective optimization problem solved via an evolutionary computational tech-
nique, while Liu et al. [17] used the population migration algorithm [18] in conjunction with the well-known quasi-Newton
method [19].

The last family of methods reported here is based on neural network techniques and include among others the use of recurrent neu-
ral networks [20–32] for the neural-based implementation of the Newton’s method, the approximation of the inverse system function
F�1.x/ via backpropagation networks [33], and the neural computation method of Meng and Zeng [34] that minimizes the energy
function J D

�Pn
iD1 e2.i/

�
=2 using an iterative algorithm.

4. The structure of the proposed neural nonlinear system solver

The proposed neural network architecture for solving systems of nonlinear algebraic equations is the generalization of an idea that
appears for the first time in [35] and describes a four-layered feed forward backpropagation neural network that uses a fixed learn-
ing rate. The number of the neurons in the output layer was equal to the number of equations of the system of nonlinear algebraic
equations, and the network had been designed in such a way that the total input to the ith output neuron to coincide with the left-
hand side of the ith system equation. The components of the system roots to be identified were associated with the variable weights of
synapses between the single input neuron and the n neurons of the second layer; the fixed coefficients of the terms for each equation
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are assigned to the fixed weights of synapses that join with full connections the neurons of the third and the fourth layer (which is
the output layer), whereas the fixed term of each equation has been embedded to the corresponding output neuron as a bias unit.
Regarding the synapses between the second and the third layer, they have also fixed weights with values 0 or 1 according to the
linear or nonlinear term associated with their target neuron. In this first attempt for using such a system, the activation function of
all neurons was the identity function; however, the network always converged to the same root, a problem that was solved using
the nonlinear hyperbolic tangent function. The network was trained with a backpropagation-type algorithm and with the zero vec-
tor as the desired output vector. In this way, the network was capable of estimating all the roots of the system, one root per training,
according to the set of initial conditions. This network has been tested successfully in solving 2 � 2 [36] as well as 3 � 3 nonlinear
systems [37].

Continuing this line of research, the present article generalizes the solvers presented in [36] and [37] for solving 2 � 2 [36] as well as
3 � 3 nonlinear systems [37] for the general case of n � n nonlinear systems. This generalization is not restricted only to the dimension
of the neural solver, but it is extended to the form of the system because it has been enhanced with some new features that do not
appear in [36] and [37]. The most important feature is that the activation functions of the third layer neurons can be any continuous
and differentiable function, a feature that adds another degree of nonlinearity and allows the network to work correctly and with
success, even in cases where the activation function of the output neurons is a simple linear function such as the identity functions.
Furthermore, in the present work, the identity output function is also substituted by the nonlinear hyperbolic tangent function with a
fast adaptive learning rate.

The complete system of nonlinear algebraic equations of n equations with n unknowns is defined as

F1.x/ D F1.x1, x2, : : : , xn/ D ˛11f11.x/C ˛12f12.x/C � � � C ˛1,k1 f1,k1.x/ � ˇ1 D 0

F2.x/ D F2.x1, x2, : : : , xn/ D ˛21f21.x/C ˛22f22.x/C � � � C ˛2,k2 f2,k2.x/ � ˇ2 D 0

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Fn.x/ D Fn.x1, x2, : : : , xn/ D ˛n1fn1.x/C ˛n2fn2.x/C � � � C ˛n,kn fn,kn.x/ � ˇn D 0

(4)

and its solution is the vector x D .x1, x2, : : : , xn/
T 2 Rn. In the aforementioned description, the nonlinear function Fi.x/ associated with

the ith nonlinear equation .i D 1, 2, : : : , n/ is treated as a vector function in the form

Fi.x/ D Œfi1.x/, fi2.x/, fi3.x/, : : : , fiki .x/� .i D 1, 2, 3, : : : , n/ (5)

with the parameter ki describing the number of the function components fij .j D 1, 2, 3, : : : , ki/ associated with the vector functionFi.x/
.i D 1, 2, : : : , n/. The problem is defined in the field R of real numbers; however, its generalization to the field C of complex numbers is
straightforward.

The structure of the neural network that can solve a complete n � n system of nonlinear algebraic equations, is shown in Figure 1. It
is characterized by four layers with the following structure:

Figure 1. The structure of the neural-based solver for systems of nonlinear algebraic equations.
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� Layer 1 is the single input layer. This layer does not participate to the backpropagation training, and it simply participates to the
variable weight synapses whose values after training are the components of the system roots. In other words, in this procedure,
there is not a training set because the simple input is always the value of unity, while the associated desired output is the zero
vector of n elements.

� Layer 2 contains n neurons each one of them is connected to the single input unit of the first layer. As it has been mentioned, the
weights of the n synapses defined in this way are the only variable weights of the network. During network training, their values
are updated according to the equations of the backpropagation algorithm, and after a successful training, these weights contain
the n components of a system root .x1, x2, x3, : : : , xn/. Because the second layer makes multiple copies of the inputs, its activation
function will be the identity function.

� Layer 3 is composed of n blocks of neurons with the `th block containing k` neurons, namely, one neuron for each one of the
k` functions associated with the `th equation of the nonlinear system. The neurons of this layer, as well as the activation func-
tions associated with them, are therefore described using the double index notation .`, j/ [for values .` D 1, 2, : : : , n/ and
.j D 1, 2, : : : , k`/]. The auxiliary functions fpq would have to be prepared in the previous layer, where they would become the
activation functions.

� Layer 4 contains an output neuron for each equation, namely, a total number of n neurons that use the hyperbolic tangent function
y D f .x/ D tanh.x/ as the activation function. The output neurons will have to realize a weighted summation of auxiliary functions,
and the output of the neuron should be the constant 0 on the other side.

Regarding the matrices of the synaptic weights, they are defined in a similar fashion as in [36] and [37] and more specifically.

The matrixW12 D
h
W
.1/

12 ,W .2/
12 , : : : ,W .n/

12

i
D Œx1, x2, : : : , xn� is the only variable weight matrix, whose elements (after the successful

training of the network) are the components of one of the system roots, or in a mathematical notationW .i/
12 D xi .i D 1, 2, : : : , n/.

The matrixW23 is composed of n rows with the ith row to be associated with the variable xi .i D 1, 2, : : : , n/. The values of this row are
the weights of the synapses joining the ith neuron of the second layer with the complete set of neurons of the third layer. There is a total
number of k D k1Ck2C� � �Ckn neurons in this layer, and therefore, the dimensions of the matrixW23 are n�k D n�.k1Ck2C� � �Ckn/.
Regarding the values of these weights, they have a value of unity if the function f`,j is a function of xi ; otherwise, they have a zero value.
Therefore, we have

W
.i,j`/

23 D

8<
:

1, if f`,j D f`,j.xi/

0, otherwise

i D 1, 2, : : : , n
` D 1, 2, : : : , n
j D 1, 2, : : : , k`

(6)

Because the second and third layers are fully connected, then, it is simple to conclude that if some xi is an argument of a function fij ,
then it should be weighted by 1 and if fij is independent of xi with a weight equal to 0.

Finally, the matrixW34 has dimensions k � n D .k1 C k2 C � � � C kn/ � n with elements

W
.`j,`/

34 D ˛`j
` D 1, 2, : : : , n
j D 1, 2, : : : , k`

(7)

The weighted summation indicates that the activation function of the output neurons should be (or behave as) linear, and the weights
of the incoming edges should correspond the ˛ij coefficients of Equation (4). The figure shows only the synapses with a nonzero
weight value.

Because the unique neuron of the first layer does not participate in the calculations, it is not included in the index notation. There-
fore, wherever we use the symbol u to describe the neuron input and the symbol v to describe the neuron output, the symbols
u1 and v1 are associated with the n neurons of the second layer, the symbols u2 and v2 are associated with the k neurons of the
third layer and the symbols u3 and v3 are associated with the n neurons of the third (output) layer. These symbols are accompa-
nied by additional indices that identify a specific neuron inside a layer, and this notation is used throughout the remaining part of
the article.

5. Building the backpropagation equations

5.1. Forward pass

The inputs and the outputs of the network neurons during the forward pass stage are computed as follows:

LAYER 2. u`1 D W
`

12 D x` and v`1 D u`1 D x` .` D 1, 2, : : : , n/.

LAYER 3. u.`,j`/
2 D x` and v.`,j`/

2 D f`,j` .x/.

LAYER 4. The input and the output of the fourth layer neurons are computed as

u`3 D
kX̀

jD1

v.`,j/
2 W

.`j` ,`/
34 � ˇ` D

kX̀
jD1

v.`,j/
2 ˛ell,j � ˇ` D F`.x/ D F`.x1, x2, : : : , xn/ (8)
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and v`3 D tanh
�

u`3
�
D tanhŒF`.x/� .` D 1, 2, : : : , n/, where the activation function of the output neurons is the hyperbolic tangent

function f .�/ D tanh.�/.

5.2. Backward pass – estimation of the adaptive errors

Working in the same way and keeping in mind that v`3 D tanhŒF`.x/� .` D 1, 2, : : : , n/ and tanh0.x/ D � tanh.x/Œ1 � tanh2 x�, we get
the following results.

ı`3 D �v`3

�
1 �

�
v`3

�2
�
D � tanhŒF`.x/�

�
1 � tanh2ŒF`.x/�

�

ı
`,j`
2.xk/
D ı`3

@v.`,j`/
2 .x/

@xk
D ı`3

@f`,j` .x/

@xk
D � tanhŒF`.x/�.1 � tanh2ŒF`.x/�/

@f`,j`

@xk

(k, ` D 1, 2, : : : , n and j` D 1, 2, : : : , k`). Finally, the parameter ıj
1 .j D 1, 2, : : : , n/ is estimated as

ı
j
1 D

nX
`D1

kX̀
j`D1

ı
`,j`
2.xk/
D �

nX
`D1

kX̀
j`D1

tanhŒF`.x/�.1 � tanh2ŒF`.x/�/
@f`,j`

@xk

D

nX
`D1

tanhŒF`.x/�.1 � tanh2ŒF`.x/�/

kX̀
j`D1

@f`,j`

@xk

D �

nX
`D1

tanhŒF`.x/�.1 � tanh2ŒF`.x/�/
@F`.x/

@xj
.j D 1, 2, : : : , n/

5.3. Weight adaptation and proof of convergence

The weight update equation for the case of the function f .x/ D tanh.x/ is performed again via the equation

xmC1
k D xm

k C ˇı
k
1 (9)

If we take into account that the function E.x/ has the form

E.x/ D
1

2

nX
`D1

�
d` � v`3

�2
D

1

2

nX
`D1

�
0 � v`3

�2
D

1

2

nX
`D1

�
v`3

�2
D

1

2

nX
`D1

tanh2ŒF`.x/�

we can easily see that

@E.x/

@xk
D

nX
`D1

tanhŒF`.x/�
@ tanhŒF`.x/�

@xk
D

nX
`D1

tanhŒF`.x/�.1 � tanh2ŒF`.x/�/
@F`.x/

@xk
D �ık

1

and therefore, Equation (9) becomes

xmC1
k D xm

k C ˇı
k
1 D xm

k � ˇ
�
�ık

1

�
D xm

k � ˇ
@E.x/

@xk
.k D 1, 2, : : : , n/

As it can be seen, the calculation of ı1 parameter implements the gradient descent backpropagation algorithm. Regarding the
convergence analysis, it is discussed in Section 6.

5.4. The case of adaptive learning rate

In this case, each neuron in the first layer has its own learning rate value ˇ.j/ .j D 1, 2, : : : , n/.
The energy function associated with the mth iteration is defined as

Em.x/ D
1

2

nX
iD1

�
0 � vi,m

3

�2
D

1

2

nX
iD1

�
vi,m

3

	2
D

1

2

nX
iD1

tanh2
�
F m

i .x/
	

(10)

If the energy function for the .mC 1/th iteration is denoted as EmC1.x/, then the energy difference is
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�Em.x/ D EmC1.x/ � Em.x/ D
1

2

nX
iD1

tanh2
h
F mC1

i .x/
i
�

1

2

nX
iD1

tanh2
�
F m

i .x/
	

D
1

2

nX
iD1

n
tanh2

h
F mC1

i .x/
i
� tanh2

�
F m

i .x/
	o

D
1

2

nX
iD1

nh
tanh

h
F mC1

i .x/
i
� tanh

�
F m

i .x/
	i h

tanh
h
F mC1

i .x/
i
C tanh

�
F m

i .x/
	io

D
1

2

nX
iD1

nh
tanh

h
F mC1

i .x/
i
� tanh

�
F m

i .x/
	i h

tanh
h
F mC1

i .x/
i
� tanh

�
F m

i .x/
	
C 2 tanh

�
F m

i .x/
	io

D
1

2

nX
iD1

˚
� tanh

�
F m

i .x/
	 �
� tanh

�
F m

i .x/
	
C 2 tanh

�
F m

i .x/
		


From the weight update equation of the backpropagation algorithm,

�xj D �ˇ.j/
@Em.x/

@xj
D �ˇ.j/

nX
`D1

tanh
�
F m
` .x/

	 �
1 � tanh2

�
F m
` .x/

	� @F m
`
.x/

@xj
.j D 1, 2, : : : , n/ (11)

Therefore, we get

� tanh
�
F m

i .x/
	
D
@ tanh

�
F m

i .x/
	

@xj
�xj

D �ˇ.j/
@ tanh

�
F m

i .x/
	

@xj

nX
`D1

tanh
�
F m
` .x/

	 �
1 � tanh2

�
F m
` .x/

	� @F m
`
.x/

@xj

D �ˇ.j/
@ tanh

�
F m

i .x/
	

@xj

nX
`D1

tanh
�
F m
` .x/

	 @ tanh
�
F m
`
.x/

	
@xj

because according to the chain rule of the derivation,

�
1 � tanh2

�
F m
` .x/

	� @F m
`
.x/

@xj
D
@ tanh

�
F m
`
.x/

	
@F m
`
.x/

@F m
`
.x/

@xj
D
@ tanh

�
F m
`
.x/

	
@xj

Finally, using this expression in the equation of�Em.x/, it gets the form

�Em.x/ D
1

2

nX
iD1

( 
�ˇ.j/

@ tanh
�
F m

i .x/
	

@xj

nX
`D1

tanh
�
F m
` .x/

	 @ tanh
�
F m
`
.x/

	
@xj

!
�

�

 
�ˇ.j/

@ tanh
�
F m

i .x/
	

@xj

nX
`D1

tanh
�
F m
` .x/

	 @ tanh
�
F m
`
.x/

	
@xj

C 2 tanhF m
i .x/

!)

D
1

2

nX
`D1

tanh
�
F m
` .x/

	 @ tanh
�
F m
`
.x/

	
@xj

�

�

"
nX

iD1

ˇ.j/2

�
@ tanhŒF m

i .x/�

@xj

�2 nX
`D1

tanh
�
F m
` .x/

	 @ tanh
�
F m
`
.x/

	
@xj

�

� 2ˇ.j/ tanh
�
F m

i .x/
	 @ tanh

�
F m

i .x/
	

@xj

#

D
1

2

nX
`D1

tanh
�
F m
` .x/

	 @ tanh
�
F m
`
.x/

	
@xj

�

�

2
4 nX

iD1

ˇ.j/2

 
@ tanh

�
F m

i .x/
	

@xj

!2 nX
`D1

tanh
�
F m
` .x/

	 @ tanh
�
F m
`
.x/

	
@xj

�

�2ˇ.j/
nX

iD1

tanh
�
F m

i .x/
	 @ tanh

�
F m

i .x/
	

@xj

#

D
1

2
ˇ.j/

 
nX
`D1

tanh
�
F m
` .x/

	 @ tanh
�
F m
`
.x/

	
@xj

!2
2
4ˇ.j/ nX

iD1

 
@ tanh

�
F m

i .x/
	

@xj

!2

� 2

3
5
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The condition of convergence for the backpropagation algorithm is �Em.x/ < 0. Because by definition the learning rate is a positive
number, namely, ˇ.j/ > 0 .j D 1, 2, : : : , n/ and furthermore 

nX
`D1

tanh
�
F m
` .x/

	 @ tanh
�
F m
`
.x/

	
@xj

!2

> 0

it should be

ˇ.j/
nX

iD1

 
@ tanh

�
F m

i .x/
	

@xj

!2

< 2

or

ˇ.j/ <
2

nX
iD1

 
@ tanh

�
F m

i .x/
	

@xj

!2 D
2

nX
iD1

 
@ tanh

�
F m

i .x/
	

@F m
i .x/

�
@F m

i .x/

@xj

!2

D
2

nX
iD1

��
1 � tanh2

�
F m

i .x/
	�
�
@F m

i .x/

@xj

�2
D

2
nX

iD1

��
1 �

h
v`3

i2
�
�
@F m

i .x/

@xj
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5.5. A modified adaptive learning rate (MALR)

Because v3 D tanh.u3/ and tanh.0/ D 0, the energy function to be minimized can be defined as
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(12)

and the associated energy difference is
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From the weight update equation of the backpropagation algorithm, we have
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and therefore,
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Using this expression in the equation of�Em.x/, it gets the form
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or equivalently,
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The convergence condition of the backpropagation algorithm is expressed as �Em.x/ < 0. Because ˇ.k/ > 0 (the learning value is
obviously a positive number) and of course it holds that 
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Defining the adaptive learning rate parameter (ALRP) �, the aforementioned equation can be expressed as

ˇ.k/ D
�

kCm
k .J /k

2
(19)

whereCm
k .J / is the kth column of the Jacobian matrix

J D
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BBB@
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...
. . .

. . .
...

@Fn=@x1 @Fn=@x2 : : : @Fn=@xn

1
CCCA (20)

for the mth iteration. Using this notation, the backpropagation algorithm converges for ALRP values � < 2.

6. Experimental results

To examine and test the validity and the accuracy of the proposed method, sample systems of nonlinear algebraic equations were
selected and solved using the neural network approach, and the results were compared against those obtained by other methods.In
these simulations, the adaptive learning rate approach (ALR) with a hyperbolic tangent activation function is considered as the primary
algorithm, but the network is also tested with a fixed learning rate value as well as an identity output function. Even though in the
theoretical analysis and the construction of the associated equations the classical backpropagation algorithm was used, the simulations
showed that the execution time can be further decreased (leading to the speedup of the simulation process) if in each cycle the synaptic
weights were updated one after the other and the new output values were used as input parameters in the corrections associated with
the next weight adaptation. Because the accuracy of the results found in the literature varies significantly, and because the comparison
of the root values requires the same number of decimal digits, different tolerance values in the form 10�tol were used, with a value of
tol D 12 to give an accuracy of six decimal digits, a value of tol D 31 to give an accuracy of 15 decimal digits, and a value of tol D 20
to give an accuracy of 10 decimal digits.

According to the proposed method, the condition that ensures the convergence of the backpropagation algorithm is given by
the inequality � < 2, where � is the ALRP. Therefore, to test the validity of this statement, a lot of simulations were performed,
with the value of ALRP varying between � D 0.1 and � D 1.9 with a variation step equal to 0.1. The maximum allowed num-
ber of iterations was set to N D 1000, and a training procedure that reaches this limit is considered to be unsuccessful. In all
cases, the initial conditions is a set in the form Œx1.0/, x2.0/, : : : , xn.0/�, and the search region is an n-dimensional region defined as
�˛ � xi � ˛ .i D 1, 2, : : : , n/. In almost all cases, the variation step of the system variables is equal to 0.1 or 0.2 even though
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the values of 0.5 and 1.0 were also used for large ˛ values to reduce the simulation time. The main graphical representation of
the results shows the variation of the minimum and the mean iteration number with respect to the value of the adaptive learning
rate parameter �.

Because in some cases the modified adaptive learning rate (MARL) method gave better results, it was also used as an alternative
approach. To distinguish between these two approaches, we call them ALR and MARL according to the expression of the energy
function to be minimized. Therefore, we have

E D

8̂̂̂
<̂
ˆ̂̂̂:

1

2

nX
iD1

tanh2ŒFi.x/� for ALR method

1

2

nX
iD1

F2
i .x/ for MALR method

where n is the dimensionality of the system. In some cases the energy function

E D
1

2

nX
iD1

F2
i .x/C

1

2

nX
iD1

tanh2ŒFi.x/�

was also used. This hybrid approach is described as the ALR12 method.
After the description of the experimental conditions, let us now present seven example systems as well as the experimental results

emerged for each one of them. In the following presentation, the roots of the example systems are identified and compared with the
roots estimated by the other methods.

Example 1
Consider the following system of two nonlinear algebraic equations with two unknowns x1, x2 defined as

F1.x1, x2/ D � sin.x1/ cos.x2/ � 2 cos.x1/ sin.x2/ D 0

F2.x1, x2/ D � cos.x1/ sin.x2/ � 2 sin.x1/ cos.x2/ D 0

(this problem has been borrowed by [38], see also [39, 40], and [41]). It can be proven that this system has 13 roots in the interval
0 � x1, x2 � 2� . To estimate those roots, the neural solver run in this search region with variation steps �x1 D �x2 D 0.2 and
�x1 D �x2 D 0.5 and identified all these roots using a tolerance value tol D 12. All the simulation runs identified the 13 roots
regardless of the initial conditions with an accuracy of 100% with minimum iteration numbers 9–13 for an ALRP value equal to 1.3. The
variation of the minimum iteration number with respect to the ALRP parameter for the ALR method is shown in Figure 2, while the
results associated with the MALR method are characterized by a similar variation.

Example 2
Consider the following system of two nonlinear algebraic equations with two unknowns x1, x2 defined as

F1.x1, x2/ D
1

2
sin.x1x2/ �

x2

4�
�

x1

2

F2.x1, x2/ D

�
1 �

1

4�

�
.e2x1 � e/C

e

�
x2 � 2ex1

(this problem has also been borrowed by [38], see also [42] and [43]), where x1 2 Œ0.25, 1� and x2 2 Œ1.5, 2��. It has been proven that the
aforementioned system has two roots in this domain. The neural solver identified these two roots using a tolerance value of tol D 12

Figure 2. The variation of the minimum iteration number with respect to the value of the adaptive learning rate parameter for the example system 1 and for the
adaptive learning rate method.
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and variation steps �x1 D 0.05 and �x2 D 0.25. As in previous cases, all the simulation runs identified all the roots regardless of the
initial conditions with a success rate greater than 64%. The best results are associated with 25 iterations and ALRP D 1.6 for root1 and
six iterations with an ALRP D 1.1 for root2. The variation of the minimum iteration number with respect the ALRP for the ALR method
is shown in Figure 3.

Example 3
The next example is a system of three nonlinear algebraic equations with three unknowns .x1, x2, x3, x4/ defined as

F1.x1, x2, x3/ D 15x1 C x2
2 � 4x3 � 13 D 0

F2.x1, x2, x3/ D x2
1 C 10x2 � e�x3 � 11 D 0

F3.x1, x2, x3/ D x3
2 � 25x3 C 22 D 0

(this is the example system 5 in [44], see also [45]). The system has been solved using the initial condition .x1, x2, x3/ D .5, 4, 2/, and
the simulation results together with the results reported by Hafiz and Bahgat are shown in Table I. Note that in order to solve the
system, each term in each equation was divided with the corresponding constant term, because the hyperbolic tangent function for
large values of arguments tends to˙1 and the solver does not work correctly. The variation of the minimum and the average iteration
number with respect to the ALRP for the ALR method are shown in Figure 4

In a more detailed description, the use of the initial condition .x1, x2, x3/ D .5, 4, 2/ leads to an almost identical result compared with
the one reported by Hafiz after 29 iterations (ALR method with ALRP D 1.0). Even though Hafiz’s method reaches the same result after
only five iterations, it evaluates four times the inverse Jacobian matrix, a process associated with high computational cost. The situation
is improved in the search region Œ�2,C2�, where the MARL method for an ALRP equal to 1.0 requires only 14 iterations.

Figure 3. The variation of the minimum iteration number with respect to the value of the adaptive learning rate parameter (ALRP) for the example system 2 and
for the adaptive learning rate (ALR) method.

Table I. Simulation results for the example system 2 (Example 5 of Hafiz and Bahgat).
HAFIZ (Example 5) MALR ALR ALR12

x1 1.0421495605769300 1.0421495605769660 1.0421495605768980 1.0421495605768980
x2 1.0310912718394000 1.0310912718394010 1.0310912718394180 1.0310912718394180
x3 0.9238481548793670 0.9238481548793740 0.9238481548793560 0.9238481548793560
F1 �0.0000000000001297 0.0000000000000298 �0.0000000000000404 �0.0000000000000404
F2 �0.0000000000000409 0.0000000000000042 0.0000000000000064 0.0000000000000064
F3 0.0000000000000142 �0.0000000000000071 0.0000000000000158 0.0000000000000158
ABSERR 0.0000000000001847 0.0000000000000411 0.0000000000000626 0.0000000000000626

MALR, modified adaptive learning rate; ALR, adaptive learning rate; ALRP, adaptive learning rate parameter.

Figure 4. The variation of the minimum and the average iteration number with respect to the value of the adaptive learning rate parameter (ALRP) for the
example system 3.
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Figure 5. The variation of the minimum and the average iteration number with respect to the value of the adaptive learning rate parameter (ALRP) for the
example system 4.

Example 4
The next system has four equations with four unknowns .x1, x2, x3, x4/ and it is defined as

F1.x1, x2, x3, x4/ D 3 � x1x2
3 D 0

F2.x1, x2, x3, x4/ D x3 sin.�=x2/ � x3 � x4 D 0

F3.x1, x2, x3, x4/ D �x2x3 exp.1 � x1x3/C 0.2707 D 0

F4.x1, x2, x3, x4/ D 2x3x2
1 � x3x4

2 � x2 D 0

(this example is described by the Equation (15) in [13]). This system, according to the literature is non-differentiable, and the method
described in [13] identifies a unique solution x0 D .3, 2, 1, 0/. The proposed neural solver was able to identify the same solution with an
accuracy of six decimal digits, and the variation of the minimum as well as the average number of iterations with respect to the ALRP
parameter are presented in Figure 5. Because in this case the network converges for an ALRP value � D 1.98, the horizontal axis has
been configured accordingly. The minimum iteration number of ALR as well as MALR is equal to 204.

Example 5
The next example describes a system of seven equations with seven unknowns xi .i D 1, 2, : : : , 7/ defined as

fi.x/ D exi � 1, i D 1, 2, : : : , 7

where x D .x1, x2, x3, x4, x5, x6, x7/ (this is the example system 7 in [44], see also [45]). The unique solution of this sys-
tem is x D .0, 0, 0, 0, 0, 0, 0/. The system was run with 2187 combinations of initial conditions, namely, from x0 D

.�0.5,�0.5,�0.5,�0.5,�0.5,�0.5,�0.5/ to x0 D .0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5/ and with a variation step�xi D 0.5 .i D 1, 2, 3, 4, 5, 6, 7/
(therefore each xi was assigned to the values �0.5, 0.0 and 0.5). In all cases, the unique root of the system was estimated with an
accuracy of six decimal digits.

The best simulation run in this example is associated with the value � D 1.0, and the root for the case of the MARL
method was reached after three iterations. To compare the results with those reported by Hafiz, the initial condition vector x0 D

.0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5/ was used and the results were four iterations for ALR and five iterations for MARL. Hafiz reported
three iterations for this case, but the proposed approach is associated with fewer mathematical operations and therefore smaller
computational cost.

Figure 6 shows the variation of the minimum and the average iteration number with respect to the ALRP parameter and for the MALR
method (the ALR method gave almost the same results).

Example 6
Finally, consider a system of eight nonlinear algebraic equations with eight unknowns xi .i D 1, 2, : : : , 8/ such as

fi.x/ D x2
i � cos.xi � 1/, i D 1, 2, : : : , 8
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Figure 6. The variation of the minimum and the average iteration number with respect to the value of the adaptive learning rate parameter (ALRP) for the
example system 5 and for the modified adaptive learning rate (MALR) method.

Figure 7. The variation of the minimum and the maximum iteration number with respect to the value of the adaptive learning rate parameter (ALRP) for the
example system 6 (CASE 2 and CASE 3).

where x D .x1, x2, x3, x4, x5, x6, x7, x8/ (this is the example system 8 in [44], see also [45]). The roots of this system in the interval Œ�2, 2�
are the 28 D 256 vertices of the eight-dimensional hypercube .x1, x2, x3, x4, x5, x6, x7, x8/with each xi .i D 1, 2, : : : , 8/ to have either the
value �0.405564 or the value 1.000000. The neural solver was used with a lot of different initial conditions, and the results in short are
the following:

� CASE 1: the initial conditions are the components of the 256 roots. The solver identified all the 256 roots.
� CASE 2: the initial conditions are spread uniformly in the interval Œ�1, 1�with a variation step equal to h D 2. This means that each

xi .i D 1, 2, : : : , 8/ gets either the value C1 or the value �1. The solver identified 192 of the 256 roots (namely, a percentage of
75%).

� CASE 3: the initial conditions are spread uniformly in the interval Œ�2, 2� with a variation step equal to h D 4. This means that
each xi .i D 1, 2, : : : , 8/ gets either the valueC2 or the value �2. The solver identified 128 of the 256 roots (namely, a percentage
of 50%).

Note, that in almost all cases, the iterations for ALR and MALR methods are almost the same for all the initial conditions. Figure 7 depicts
the variation of the minimum and the maximum iteration number with respect to the ALRP for example system 6 and for the methods
ALR and MALR. Note the large variation between the minimum and the maximum iteration number for the method ALR in CASE 3.
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Figure 8. The variation of the iteration number with respect to the value of the adaptive learning rate parameter (ALRP) for the example system 7 and for the
search region Œ�2,C2�.

To compare the results of our method with the results mentioned in Hafiz, the neural solver run with the same initial condition
x0 D .2, 2, 2, 2, 2, 2, 2, 2/. Both methods converged to the same root found by Hafiz with a value of .1, 1, 1, 1, 1, 1, 1, 1/ and the best
results emerged from ALR method for an ALRP value of � D 1.0 and a minimum iteration number equal to 7.

Example 7
Consider the following system of nine nonlinear algebraic equations with nine unknowns xi .i D 1, 2, : : : , 9/ defined as

fi.x/ D cos.xi/ � 1, i D 1, 2, : : : , 9

wherex D .x1, x2, x3, x4, x5, x6, x7, x8, x9/ (this is the example system 9 in [44], see also [45]). The network was run twice with 512 different
initial condition combinations. In the first run, each one of the xi .i D 1, 2, : : : , 9/ was assigned to the values of �1 and C1 (in an
equivalent description, the network run in the interval Œ�1,C1� with a variation step h D 2). In the second run, each one of the xi

.i D 1, 2, : : : , 9/ was assigned to the values of �2 and C2 (in an equivalent description the network run in the interval Œ�2,C2� with
a variation step h D 4). The tolerance value used in these cases was tol D 24, a fact that allowed the estimation of the system root
with an accuracy of six decimal digits, while the values of the Fi.x/ functions .i D 1, 2, : : : , 9/ were estimated with an accuracy of 12
decimal digits. The unique root of the system identified by the network (because of the values of the initial condition) has the value
x D .0, 0, 0, 0, 0, 0, 0, 0, 0/, but of course, it is well known that the system has infinite roots in the form of xi D 2�m .i D 1, 2, : : : , 9, m D
0, 1, 2, 3, : : : /. The iteration number with respect to the ALRP for the ALR method and for the search region Œ�2,C2� is shown in Figure 8.
Note that in this case, the number of iterations for each initial condition was the same.

To compare the neural based results with the results reported in the literature, the initial condition vector x0 D .2, 2, 2, 2, 2, 2, 2, 2, 2/
was also used. In this case, the minimum number of iterations was equal to 8 for the ALR method (for the value ALRP D 1.9) and equal
to 5 for the MALR method (for the value ALRP D 1.9).

It is important to note that the presented approach has been tested to various systems of equations of degree from n D 2 to n D 9.
The examples used in the simulations have been borrowed from the literature. Particularly, the large systems, whose equations were
used here, are determined by the same function. This limitation does not have any influence to the convergence of the algorithm,
because the convergence and the CPU time (or equivalently the number of iterations needed for convergence) depends not only on
the dimension of the system, namely, the number of equations, but also on the complexity of each function and the value of the ALRP,
which determines the value of the learning rate (because we are using a gradient descent algorithm). For instance, with an ALRP D 1.5,
the system in Example 1 with n D 2 equations needs 17 to 20 iterations (best value of ALRP D 1.3 with 9–13 iterations), whereas the
system in Example 4 with n D 4 equations needs 8177 iterations (best value of ALRP D 1.98 with 204 iterations ), the system in Example
5 with n D 7 equations needs 15 to 17 iterations (best value of ALRP D 1.0 with four iterations), but the system in Example 7 with n D 9
equations needs 13 iterations (best value of ALRP D 1.9 with eight iterations). From these results, we are not able to derive any direct
relationship between the dimension of the system and the number of iterations needed for convergence. On the contrary, for every
one of the examples used, we always find some ALRP values for which the system converges to the exact solution with a minimum
number of iterations.

7. Conclusions

The objective of this research was the design and performance evaluation of a neural network architecture, capable of solving a com-
plete system of n nonlinear algebraic equations with n unknowns. The novel attribute of this approach is the adaptive learning rate for
the neurons of the first layer as well as the use of the hyperbolic tangent function as the activation function of the output neurons. The
developed theory shows that the network must be used with an adaptive learning rate parameter � < 2. The network was tested for
solving seven example systems with increased dimensionality and in all cases was able to identify all the available roots in the search
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region with an exceptional accuracy, because the solutions we found by using our algorithm were accurate to at least six decimal dig-
its. Challenges for future research include the use of the network for the identification of multiple real and complex roots as well as the
identification of all roots in only one simulation run.
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